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Abstract

The use of surrogate models to approximate computationally expensive simulation models, e.g., large comprehensive

finite element models, is widespread. Typical uses of surrogate models include design, optimization, sensitivity analysis

and/or uncertainty quantification. A surrogate model is defined by a postulated functional form, and values for the

surrogate model parameters are estimated using results from a limited number of solutions to the comprehensive model. In

general, there may be multiple surrogate models, each defined by possibly a different functional form, consistent with the

limited data from the comprehensive model. We refer to each as a candidate surrogate model. Methods are developed and

applied to select the optimal surrogate model from the collection of candidate surrogate models. One approach is to select

the surrogate model that best fits the data provided by the comprehensive model, regardless of its intended use. The

proposed approach applies techniques from decision theory, where postulated utility functions are used to account for the

model use within the selection process. Three applications are presented to illustrate the methods. These include surrogate

model selection for the purpose of: (1) estimating the minimum of a deterministic function, (2) the design under uncertainty

of a simple oscillator, and (3) the uncertainty quantification of a complex engineering system subject to a severe shock and

vibration environment.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Most systems in science and engineering can be described by an input/output relationship of the type shown
in Fig. 1, where input x and operator f are, in general, vector valued. Typically, f is defined by a collection of
differential, integral, and/or algebraic equations with (possibly) random coefficients. The objective is to
calculate properties of an output vector, y. For example, f can be a finite element (FE) model of a spacecraft
that maps an applied pressure field, x, to the displacement response, y, of an internal component. Properties
of y, e.g., the maximum in time, can then be calculated.

Mathematical models for the system shown in Fig. 1 are developed for one or more reasons, what
we refer to as the model use. For example, we may use the models described above to select the appro-
priate stiffness and/or location of the internal component attachment point such that maximum in time
of its response to the prescribed load is less than some critical value. In this case, we say the model use
is design.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Model for a system as an input/output relationship.
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Real physical systems such as the example described above are often very complex. The models developed to
study such systems can therefore involve a large number of equations that can only be solved numerically with
a computer, requiring many hours to obtain an accurate solution. We refer to models of this type as
comprehensive models for the system. Circumstances may require a simplified approximation for the
comprehensive model; we refer to this approximation as a surrogate model for the system. To illustrate,
consider the case where multiple solutions of the large FE model for the spacecraft are necessary. This can
occur, for example, if the applied pressure field is random in space and/or time, and Monte Carlo simulation is
used as the method for analysis. Optimization and sensitivity analyses also often require multiple model
solutions to estimate, for example, the gradient of the output to changes in one or more design variables.

Surrogate models are typically based on a limited number of calculations from the comprehensive models
they approximate. Because of this, there may be more than one surrogate model that is consistent with the
available information. We refer to the collection of these models as the collection of candidate surrogate models

for the system. Typical surrogate models include, but are not limited to, polynomials functions [1], radial basis
functions (RBFs) [2,3], Kriging interpolation [4,5], and multivariate adaptive regression splines [6]. One type
of surrogate model for non-Gaussian random variables and stochastic processes is the polynomial chaos
approximation [7,8].

Most often, one surrogate model from the collection of candidate surrogate models is selected and used for
analysis. Classical methods to select a surrogate, such as the approaches discussed in Ref. [1], Chapter 2,
and/or Ref. [9], typically do not consider the model use. It has been demonstrated [10] that this limitation may
render classical methods for surrogate model selection inappropriate for some applications. Herein, we also
consider a decision-theoretic method, introduced in Refs. [10,11], to select a surrogate model for the system.
Decision theory provides a representation for possible models for the system, a set of options for action, and a
utility function that quantifies the decision maker’s preferences for each action taken, under each possible
model [12]. One criticism of the method is the possible subjectivity of the utility function since the construction
of such a function requires a fair understanding of the consequences of unsatisfactory system behavior. We
assume these consequences to be well-specified for all examples considered. These methods for model selection
have been applied to turbulence models for re-entry random vibration [13] and the monitoring of vehicles in
the vicinity of critical national assets [14].

For illustration, we herein apply both methods for surrogate model selection to three applications with
different model uses. We choose optimal surrogate models to estimate the minimum of a deterministic
function, for design under uncertainty of a simple oscillator, and for uncertainty quantification of a complex
engineering system, for applications 1, 2, and 3, respectively.
2. The model selection problem

Consider the following input/output relationship motivated by Fig. 1

y ¼ fðxÞ, (1)

where f:Rd ! Rl is a deterministic, measurable mapping, and x ¼ ðx1; . . . ;xdÞ
T and y ¼ ðy1; . . . ; ylÞ

T are
Rd - and Rl-valued vectors, respectively. Vectors x and y may be deterministic or random; for the latter case,
we replace x and y with X and Y, respectively. We assume: (i) f is the comprehensive model for a physical
system developed for a specific purpose, i.e., the model use, (ii) the functional form for f is not explicitly
known, but given a value for x, we can calculate the corresponding value for fðxÞ, and (iii) limited information
on f is available.
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The limited information on f is of two types: (a) calibration data, denoted by ðzi;wiÞ, i ¼ 1; . . . ; n, where
zi 2 Rd and wi ¼ fðziÞ, and (b) prior knowledge, i.e., any information, other than data, on the underlying
physics of the system shown in Fig. 1. Prior knowledge is made up by the opinions and theories of experts, as
well as any literature on the subject; the fact that f is nonnegative is one example of prior knowledge. We refer
to items (a) and (b) collectively as the available information on f. Note that by assumptions (ii) and (iii), the
effects of any solution error are not included.

2.1. Candidate models

There may be more than one surrogate model for f that is consistent with the available information. Define

G ¼ fg1; g2; . . .g, (2)

where, for each j, gj:R
d ! Rl denotes a surrogate model for f. We refer to G as the collection of surrogate

models for f. Each gj 2 G must be consistent with the available information on f, meaning that: (i) any
surrogate model that violates the prior knowledge on f is excluded from the collection, and (ii) given a
functional form for gj, we estimate values for the coefficients of gj using the calibration data. For example,
consider the case where each gj is a polynomial function of the coordinates of x 2 Rd up to and including order
j; the coefficients of surrogate model gj can be estimated using, for example, the method of least squares.

The objective is to select the optimal surrogate model for f, denoted g% 2 G; this requires a procedure to
rank or order the members of G. One way to order the collection of candidate surrogate models is to assess the
accuracy of each gj 2 G at various values for x 2 Rd . A comparison of the surrogate models at the calibration
data alone may be inadequate since, in many cases, two candidate surrogate models may give the same results,
i.e., giðzkÞ ¼ gjðzkÞ, for iaj and k ¼ 1; . . . ; n. We therefore introduce validation data, denoted by ðz0k;w

0
kÞ,

k ¼ 1; . . . ;m, where z0k 2 Rd and w0k 2 R
l .

Validation data may originate from two sources: (i) solutions of f at values for x that do not coincide
with the calibration data, i.e., w0k ¼ fðz0kÞ, z0kazi, i ¼ 1; . . . ; n, k ¼ 1; . . . ;m, and/or (ii) experimental
observations of the system shown in Fig. 1. As the name implies, validation data may not be used for
surrogate model calibration. The concept of using validation data to assess the accuracy of a surrogate model
is common; see, for example, Ref. [9]. Cross validation techniques may also be used [15], but are not
considered here.

Define

pj / l
Xm

k¼1

kw0k � gjðz
0
kÞk

2 þ ð1� lÞ
Xn

i¼1

kwi � gjðziÞk
2

 !�1=2
, (3)

where / is used to imply that pj is proportional to the RHS of Eq. (3), l 2 ð0; 1Þ is a deterministic constant,
and kfk2 ¼

Pd
i¼1z

2
i denotes the square of the 2-norm of vector f 2 Rd . We scale Eq. (3) such that

P
jpj ¼ 1 and

interpret pj to be the probability that surrogate model gj 2 G is true. The values for p1; p2; . . . therefore define
an ordering for the members of G.

2.2. Optimal model by classical method

One technique to select g% 2 G is to consider only the model probabilities defined by Eq. (3). We refer to this
approach as the classical method for surrogate model selection and note that the purpose or use of the model,
e.g., design or optimization, is not considered in the selection process. Hence, with this method, the optimal
model is independent of the model use.

By the classical method, surrogate model gi 2 G is optimal and denoted by g% if, and only if

piXpj ; j ¼ 1; 2; . . . . (4)

We note that by Eq. (3) if validation data is unavailable, pj depends on the calibration data alone, and g% 2 G
is that model which minimizes the mean squared error between wi and g%ðziÞ. If, in addition, we have
wi ¼ gjðziÞ, i ¼ 1; . . . ; n, j ¼ 1; . . ., meaning that each gj 2 G interpolates the calibration data, we cannot rank
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any surrogate model higher than any other; in this case the models are assumed equally likely, i.e.,
p1 ¼ p2 ¼ � � �.
2.3. Optimal model by decision-theoretic method

Consistent with the approach developed in Refs. [10,11] we propose to instead assess the utility of each
candidate surrogate model for the intended model use, then rank the members of G according to their expected
utility. Let Uðgi; gjÞX0 denote the utility associated with using surrogate model gi 2 G for the intended use,
assuming surrogate gj 2 G is the best surrogate model available. We construct U such that Uðgi; gjÞXUðgk; gjÞ

if, and only if, the consequences of using model gi are preferable to the consequences of using model gk. By
definition, the utility function is a random variable, and

ui ¼ E½Uðgi;GÞ� ¼
X

j

Uðgi; gjÞpj (5)

denotes the expected utility of surrogate model gi.
By the decision-theoretic method, surrogate model gi 2 G is optimal and denoted by g% if, and only if

uipuj ; j ¼ 1; 2; . . . . (6)

The utility, U, is sometimes referred to as the ‘‘opportunity loss’’ (see Ref. [16], p. 60) so that the solution to
Eq. (6) agrees with intuition, i.e., g% 2 G minimizes the expected loss. For the special case where
Uðgi; gjÞ ¼ 1� dij , where dij ¼ 1 for i ¼ j and zero otherwise, the optimal surrogate model by the classical
method (Eq. (4)) is recovered (see Ref. [17], p. 23).

The utility function, U, depends on the model use, meaning that different surrogate models may be selected
for a different model use, even when the comprehensive model, f defined by Eq. (1), remains unchanged. To
illustrate this, we apply the decision-theoretic method for surrogate model selection to the design of a simple
oscillator in Section 4. Two different design metrics are considered, and the method selects different surrogates
depending on the design metric considered.

The overall process of surrogate model section as applied herein is outlined by Fig. 2. Beginning with the
available information, i.e., the calibration and validation data, a collection of candidate surrogate models can
be defined. Next, we identify an appropriate utility function based on the model use. Finally, we select the
optimal model from the collection. As mentioned, classical methods do not consider the model use; the use of
the dashed line in Fig. 2 is meant to convey this.
Available information
•  Calibration data
•  Validation data

Model use
•   Design
•  Optimization
•  Sensitivity analysis

Select optimal model, g
•  Classical methods
•  Decision theory

Utility

function

Collection of candidate
surrogate models, G

Fig. 2. The process of surrogate model selection (adapted from Ref. [10]).
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3. Surrogate models

Three classes of surrogate models are briefly reviewed. Detailed descriptions of these models can be found
in, for example, Ref. [1], Chapter 2, and Ref. [9]. The purpose here is not to present an exhaustive list of the
numerous types of surrogate models used in practice, but rather to present an overview of a few simple
relevant models so as to illustrate the concept of surrogate model selection. We restrict our discussion to the
case of scalar output y; we therefore replace f, g, and y defined in Section 2 with f, g, and y, respectively.

We consider surrogate models for y ¼ f ðxÞ, x 2 Rd , of the following type:

gðx;Hr
dÞ ¼

Xr

j¼1

cjhjðxÞ ¼ cThðxÞ, (7)

where c ¼ ðc1; . . . ; crÞ
T denotes a deterministic vector of coefficients that must be determined, and hðxÞ ¼

ðh1ðxÞ; . . . ; hrðxÞÞ
T denotes an array of deterministic vector-valued basis functions. We explicitly write g as a

function of the collection Hr
d ¼ fh1ðxÞ; . . . ; hrðxÞ; x 2 Rdg to denote the dependence of the surrogate model on

the choice of basis.
The method of least-squares can be used to solve for the coefficients of Eq. (7), i.e.,

c ¼ ðaTaÞ�1aTw, (8)

where a is an n� r matrix with elements aij ¼ hjðziÞ, w ¼ ðw1; . . . ;wnÞ
T, and ðzi;wiÞ, i ¼ 1; . . . ; n, denotes the

calibration data defined in Section 2. For the special case when r ¼ n and a has full rank, Eq. (8) reduces to

c ¼ a�1w. (9)

Many of the surrogate models used in practice assume the calibration data, ðzi;wiÞ, i ¼ 1; . . . ; n, satisfy the
following criteria:

Xn

j¼1

wj ¼
Xn

j¼1

zk;j ¼ 0; k ¼ 1; . . . ; d; and

Xn

j¼1

w2
j ¼

Xn

j¼1

z2k;j ¼ 1; k ¼ 1; . . . ; d, ð10Þ

where zk;j denotes the kth coordinate of vector zj. When necessary, we will make the same assumption; the
extension to the case where the calibration data do not satisfy Eq. (10) is straightforward.

As noted, the surrogate model for f defined by Eq. (7) depends on the choice of basis, Hr
d . We next discuss

some properties of g for three different choices for Hr
d , where each choice is commonly used in practice.

The bases studied include polynomial, exponential, and indicator functions of x, and are discussed in
Sections 3.1–3.3, respectively.
3.1. Polynomial basis

Let Pr
d ¼ fh1ðxÞ; . . . hrðxÞ; x 2 Rdg denote the collection of multidimensional polynomials of x up to, and

including, order q, where

hjðxÞ ¼ x
q1
1 x

q2
2 � � � x

qd
d , (11)

each qi 2 f0; 1; . . . ; qg, and
Pd

i¼1qipq. It follows that r, the number of terms in Eq. (7), is given by
r ¼

Qq
j¼1ð1þ d=jÞ. For example, consider the case of d ¼ q ¼ 2 so that r ¼ ð1þ 2Þð1þ 2=2Þ ¼ 6. The

corresponding collection of basis functions is given by P6
2 ¼ fh1ðx1;x2Þ; . . . ; h6ðx1; x2Þg, where

h1ðx1; x2Þ ¼ 1,

h2ðx1; x2Þ ¼ x1,

h3ðx1; x2Þ ¼ x2,
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h4ðx1; x2Þ ¼ x2
1,

h5ðx1; x2Þ ¼ x1x2,

h6ðx1; x2Þ ¼ x2
2. ð12Þ

The polynomial basis, perhaps the most frequently used approximation for dealing with functions on
bounded domains, has some interesting properties. First, in general gðzi;P

r
dÞawi, meaning that a surrogate

model defined on Pr
d does not necessarily interpolate f. Second, by Weierstrass’s theorem, as r!1, any

continuous f can be approximated on a finite interval with arbitrary precision (see Ref. [18], p. 159).

3.2. Exponential basis

Assume r ¼ n and let En
d ¼ fh1ðxÞ; . . . ; hnðxÞ; x 2 Rdg denote a collection of exponential functions of x,

where

hjðxÞ ¼ expð�yjkx� zjk
2Þ; j ¼ 1; . . . ; n (13)

and yj40 is a deterministic parameter. An alternative collection of basis functions, denoted by ~E
n

d ¼

f ~h1ðxÞ; . . . ; ~hnðxÞg, can be considered, where

~hjðxÞ ¼ hjðxÞ þ
1� 1Ta�1hðxÞ

1Ta�11
. (14)

1 ¼ ð1; 1; . . . ; 1ÞT denotes an n� 1 vector of ones, and hðxÞ is defined by Eq. (7).
The bases defined by Eqs. (13) and (14) are similar. Because r ¼ n, g interpolates f for either basis, meaning

that gðzi; E
n
dÞ ¼ gðzi; ~E

n

dÞ ¼ wi, i ¼ 1; . . . ; n. The second term on the RHS of Eq. (14) is zero for x ¼ zi,

i ¼ 1; . . . ; n; it follows that ~hjðziÞ ¼ hjðziÞ, i; j ¼ 1; . . . ; n, and the coefficients of Eq. (7) are therefore identical
under basis En

d and ~E
n

d . The surrogate models defined above have special names in the literature. Eq. (13) is a
particular type of radial basis function (RBF), and under basis ~E

n

d , Eq. (7) is a Kriging approximation for f

[3,5]. The RBF and Kriging approximations are commonly used in practice as surrogate models for large,
complex FE models (see, for example, Ref. [19]).

3.3. Indicator basis

Assume r ¼ n and let In
d ¼ fh1ðxÞ; . . . ; hnðxÞ; x 2 R

dg denote a collection of basis functions, where

hjðxÞ ¼ 1ðx 2 rjÞ (15)

and r1; . . . ;rr � Rd denote non-overlapping subsets of Rd . The function 1ðAÞ ¼ 1 if event A is true, and
1ðAÞ ¼ 0 otherwise, is referred to as an indicator function. We consider the special case where each rj is a
rectangle in Rd with center x ¼ zj and size f1 � � � � � fd , i.e.,

rj ¼ �
d

k¼1
½zk;j � fk=2; zk;j þ fk=2�; j ¼ 1; . . . ; n (16)

and

fk ¼ min
zk;iazk;j

jzk;i � zk;jj. (17)

By Eqs. (16) and (17), a ¼ in, where in denotes the n� n identity matrix, so that, by Eq. (9), c ¼ w. More
sophisticated techniques are available to select both the number of basis functions, r, and the subsets,
r1; . . . ;rr; one popular approach is the Multivariate Adaptive Regression Spline (MARS) [6].

4. Applications

Three applications are provided to demonstrate the methods for surrogate model selection. Various
types of model use are considered, including: (i) deterministic prediction, (ii) design under uncertainty, and
(iii) uncertainty quantification. For (i), we consider a collection of surrogate models for f, a deterministic,
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fourth-order polynomial function of two variables, for the purpose of estimating the minimum of f. For (ii),
we consider the design of a simple oscillator subject to a time-varying forcing function, where one of the
system parameters is modeled as a random variable. Two different design metrics are considered, and the
optimal surrogate model is selected for each metric. For (iii), f is a highly nonlinear transient dynamics FE
model of a flexible structure penetrating a hard target, and surrogate models are needed in order to quantify
the effects of uncertainty in certain initial conditions on system response. Applications (i), (ii), and (iii) are
discussed in Sections 4.1, 4.2, and 4.3, respectively.

4.1. Deterministic prediction

Let

f ðx1; x2Þ ¼ 100ðx2 � x2
1Þ

2
þ ð1� x1Þ

2; x 2 D, (18)

where D ¼ ½�2; 2� � ½�2; 2�, be the comprehensive model of interest. This particular example has been
extensively studied by the optimization community and is commonly known as the Rosenbrock test function
[20,21]. The function f is illustrated in Fig. 3; a contour plot is also shown.

The objectives are: (i) select the optimal surrogate model for f, and (ii) use the optimal surrogate to estimate

Z ¼ min
x2D

f ðxÞ. (19)

The exact solution to Eq. (19) is Z ¼ 0 at x ¼ ð1; 1ÞT, as denoted by the solid circle in Fig. 3.

4.1.1. Candidate models

The available information on f is limited to n calibration data, denoted by ðzi;wiÞ, i ¼ 1; . . . ; n. We assume m

validation data, denoted by ðz0j ;w
0
jÞ, j ¼ 1; . . . ;m, where w0j ¼ f ðz0jÞ and z0jazi, i ¼ 1; . . . ; n, j ¼ 1; . . . ;m. The

values for zi and z0j are illustrated by Fig. 4, where domain D is discretized into 64 non-overlapping 1=2� 1=2
regions, defined by the 81 nodes in the figure. As denoted by the black squares in Fig. 4, m ¼ 5 of the 81 nodes
are reserved for surrogate model validation. The calibration points are selected at random from the remaining
76 nodes. The values for z1; . . . ; zn for the case of n ¼ 4 and 10 are illustrated by Fig. 4.

Six candidate surrogate models for f are considered, i.e.,

G ¼ fg1; . . . ; g6g

¼ fgðx;P6
2Þ; gðx;P

10
2 Þ; gðx;P

15
2 Þ; gðx; E

n
2Þ; gðx; ~E

n

2Þ; gðx; I
n
2Þg, ð20Þ

where the functional form for each surrogate is defined by Eq. (7), and the parameters for each surrogate are
estimated from the calibration data shown in Fig. 4. By Eq. (20), g1, g2, and g3 are second-, third-, and fourth-
order polynomial functions of x 2 R2, respectively. Surrogate models g4 and g5 are defined on the exponential
basis defined by Eqs. (13) and (14), respectively, with yj ¼ 1, j ¼ 1; . . . ; n; g6 is defined on the indicator basis
discussed in Section 3.3.

We refer to g3 2 G as the ‘‘true surrogate model’’ for f because, by Eq. (18), f is a fourth-order polynomial
in x. Contours of surrogates g1, g3, g4, and g6 are shown in Fig. 5 for the case of n ¼ 15. These results
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Fig. 3. The Rosenbrock function, f ðx1; x2Þ, considered in application #1.
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Fig. 4. Locations of n calibration data (red circles) and m validation data (green squares) for application #1 assuming: (a) ðm; nÞ ¼ ð5; 4Þ,
and (b) ðm; nÞ ¼ ð5; 10Þ.
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Fig. 5. Contours of four of the six candidate surrogate models for f assuming n ¼ 15: (a) g1, (b) g3, (c) g4, and (d) g6.

R.V. Field Jr. / Journal of Sound and Vibration 311 (2008) 1371–13901378
demonstrate that, for fixed n, the surrogate models can be very different from one another, but each is
consistent with the available information. Further, as illustrated by Fig. 6, a surrogate model can change
dramatically with n, the amount of available information. For very few calibration data, as illustrated by
Fig. 6a, surrogate g4 is very different from the exact function f illustrated by Fig. 3; as the number of
calibration data grows large, g4 looks very much like f (see Fig. 6d).

4.1.2. Optimal model

We apply the classical and decision-theoretic methods to select optimal surrogate models for f, then use
these models to estimate Z ¼ minf ðxÞ. Further, we study the evolution of the optimal model and
corresponding estimates for Z as the number of calibration data, n, increases.
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Fig. 6. Contours of surrogate model g4 assuming: (a) n ¼ 4, (b) n ¼ 15, (c) n ¼ 38, and (d) n ¼ 76.
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As discussed in Section 2, the decision-theoretic method for model selection requires a utility function. Let

xi ¼ min
x2D

giðxÞ, (21)

so that xi denotes an approximation for Z defined by Eq. (19) using surrogate gi 2 G. Assuming surrogate
gj 2 G is true, we say gi 2 G is conservative if it over-predicts the minimum, i.e., if xiXxj. We assume
conservative models are preferable to non-conservative models and use this assumption as the basis for our
interpretation of surrogate model utility.

An appropriate value for the utility of surrogate model gi 2 G, assuming surrogate gj 2 G is true, is given by

Uðgi; gjÞ ¼
~Uðxi; xjÞ ¼

b1ðxi � xjÞ
2 if xiXxj ;

b2ðxi � xjÞ
2 if xioxj ;

(
(22)

where b2Xb1X0 are deterministic parameters, and we replace U with ~U to denote that the utility function can
be expressed as a function of xi and xj alone. By Eq. (22), non-conservative models are assigned a large utility;
overly conservative models are also subject to penalty. We note that definitions of model utility are problem
dependent; alternative definitions can be used.

The surrogate model probabilities, p1; . . . ; p6, are illustrated by Fig. 7(a) for 4pnp20; shown in Fig. 7(b)
are the expected utilities of each surrogate model, u1; . . . ; u6. Parameters l ¼ 1=2, b1 ¼ 1, and b2 ¼ 10 were
used for calculations. The optimal surrogate model, g% 2 G, using the classical method (by Eq. (4)) and
decision-theoretic method (by Eq. (6)) are shown in Fig. 8 for 4pnp20. For no15, different surrogate models
for f are optimal under the two methods for model selection. For nX15, p3 ¼ 1 so that the true model, g3, is
selected by both methods; this is because g3 is a fourth-order polynomial requiring r ¼ 15 coefficients
(see Section 3.1).

Recall that only the decision-theoretic method includes the model use and, therefore, assigns a large utility
to those models that provide non-conservative predictions of Eq. (19). To illustrate this, let

x%
¼ min

x2D
g%ðxÞ (23)
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denote the prediction of Eq. (19) under the optimal model, g% 2 G. Values for x% using the classical method
and proposed decision-theoretic method are shown in Fig. 9. Note that with the classical method, a non-
conservative model, i.e., one that under-predicts the minimum, may be selected for no15. For nX15, x%

¼

minx2Df ðxÞ ¼ 0 using both methods for surrogate model selection.
The results of this section illustrate two important properties. First, when data is limited the two

methods can deliver different results; only the decision-theoretic method accounts for the model use and
ensures a conservative estimate for Z defined by Eq. (19). Second, if one of the surrogate models exactly
duplicates the comprehensive model, it will be selected by both methods considered. We remark
that the results presented depend on the: (i) location and number of the validation data, (ii) order in which
the calibration data is selected (see Fig. 4), and (iii) utility function. More sophisticated methods are
available to select locations for calibration and validation data (see, for example, Ref. [22], Section 4.3); these
methods can easily be included in the model selection framework presented here. A discussion on the
sensitivity of the optimal model by the decision-theoretic method to changes in the utility function are
discussed in Ref. [10].

4.2. Design under uncertainty

We next consider the 2 degree-of-freedom oscillator shown in Fig. 10, a model commonly used for
applications in structural dynamics, where z denotes the forcing function, X denotes the value for a spring
constant, m1 and m2 denote the values for the two masses, and v denotes the relative displacement of the two
masses. We assume: (i) input zðtÞ is a perfectly known and deterministic function of time, t, (ii) the value for
one of the spring constants is known and fixed, (iii) X is a uniform random variable on [1500,2500], and
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Fig. 10. Two degree-of-freedom oscillator considered in application #2.
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(iv) the values for the two masses are deterministic design parameters that must satisfy the following
constraints:

m1 þm2 ¼ 100, (24a)

1

99
p

m2

m1
p1. (24b)

The objectives are to: (i) select the optimal surrogate model for the comprehensive system model, and (ii) select
values for m1 and m2, such that certain properties of v satisfy a prescribed set of conditions.

Let m, d, and k denote the 2� 2 mass, damping, and stiffness matrices, respectively, of the two degree-of-
freedom oscillator shown in Fig. 10, i.e.,

m ¼

100

1þ d
0

0
100d
1þ d

2
664

3
775 and k ¼

X þ 20 �20

�20 �20

� �
, (25)

where d ¼ m2=m1 is the ratio of the two masses, and d is such that the system is classically damped with a
constant damping ratio of 4% for each mode. The relative displacement of the two masses, assuming zero
initial conditions, is g,

vðt;X ; dÞ ¼ c

Z t

0

exp½aðt� tÞ� b zðtÞdt, (26)

where

a ¼
0 i

�m�1k �m�1d

� �
; b ¼ ½ 0 0 �1 �1 �T; c ¼ ½�1 1 0 0 �, (27)
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and i denotes the 2� 2 identity matrix. We consider two metrics of system performance, given by

PðYpȳÞ, (28a)

and

E½Y �, (28b)

where ȳX0 is a prescribed deterministic parameter, and

Y ¼ f ðX ; dÞ ¼ max
tX0
j vðt;X ; dÞ j (29)

is the output of interest. We write Y ¼ f ðX ; dÞ in Eq. (29) to be consistent with the general input/output
relationship described by Fig. 1, and we replace x with ðX ; dÞ and y with Y; capital letters for X and Y are used
to denote that these two quantities are random variables.

To estimate the performance metrics defined by Eq. (28), it is convenient to approximate Eq. (29) with a
surrogate model; approximation may become necessary when we consider nonlinear systems or linear systems
with many degrees-of-freedom. Herein, we employ methods for surrogate model selection for the purpose of
design under uncertainty. We consider two cases:

Case #1 : select d 2 ½1=99; 1� such that PðYpȳÞ ¼ q̄, (30a)

Case #2 : select d 2 ½1=99; 1� such that E½Y � ¼ r̄, (30b)

where q̄ and r̄ denote prescribed deterministic parameters that define the design constraints. The model use for
Case #1 is different than for Case #2 because, by Eq. (30), the design constraints are different. Optimal
surrogate models for Case #1 and Case #2 are discussed in Sections 4.2.2.1 and 4.2.2.2, respectively.

4.2.1. Candidate models

The available information on f is limited to n calibration data, denoted by ðzi;wiÞ, i ¼ 1; . . . ; n, and m

validation data, denoted by ðz0k;w
0
kÞ, k ¼ 1; . . . ;m. We assume the latter is given by simulated experimental

observations of the system shown in Fig. 10. For calculations, we model each experimental observation as the
solution of the comprehensive model at one of the calibration points, subject to additive noise, i.e., for
k ¼ 1; . . . ;m, w0k is one sample of random variable

f ðz0kÞ þ Ek, (31)

where fEkg denotes a sequence of zero-mean iid Gaussian random variables with variance s2, each z0k coincides
with one of zi, i ¼ 1; . . . ; n, and mpn. The data are illustrated by Fig. 11 for m ¼ 5 and n ¼ 10. The values for
z01; . . . ; z

0
5, the validation data, are shown in Fig. 11(a), while the values for z1; . . . ; z10, the calibration data, are

shown in Fig. 11(b). For calculations, the forcing function, zðtÞ, is given by one sample of Gaussian white noise
with intensity 10; 000=p (see Ref. [23], p. 29).

We consider 6 candidate surrogate models for f, i.e.,

G ¼ fg1; . . . ; g6g

¼ fgðX ; d;P6
2Þ; gðX ; d;P

10
2 Þ; gðX ; d;P

15
2 Þ; gðX ; d; E

n
2Þ; gðX ; d; ~E

n

2Þ; gðX ; d; I
n
2Þg, ð32Þ

where the functional form for each surrogate is defined by Eq. (7), and the parameters for each surrogate are
estimated from the calibration data illustrated by Fig. 11(b). Note the functional form for each surrogate
considered is identical to the functional form considered in Section 4.1.1. Unlike the example of Section 4.1,
there is no true surrogate model for f. Contours of surrogates g1, g2, g4, and g6 are shown in Fig. 12 for the
case of n ¼ 15, illustrating that the candidate surrogate models for f are very different, but each is consistent
with the available calibration data.

4.2.2. Optimal model

We first apply the classical method for model selection; results using the decision-theoretic method, which
depend on the model use, are discussed in Sections 4.2.2.1 and 4.2.2.2. The surrogate model probabilities,
p1; . . . ; p6, are illustrated by Fig. 13(a) for 5pnp81; the optimal surrogate model for f using the classical
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method, i.e., by Eq. (4), is shown in Fig. 13(b) as a function of n. Parameters l ¼ 1=2 and s2 ¼ 10 were used
for calculations. For no16, any surrogate model can be selected. For nX16, values for p1, p2, and p3, which
correspond to the polynomial models, approach zero, while values for p4, p5, and p6 are nearly identical and
approach 1=3. Hence, among models fg4; g5; g6g there is no strong preference of one over another for nX16;
this is further demonstrated by the oscillatory behavior of g% illustrated by Fig. 13(b).

4.2.2.1. Case #1. As discussed in Section 2, the decision-theoretic method for model selection requires a
utility function; we next develop such a function to quantify the utility of each surrogate that is consistent with
the model use (Eq. (30a)).

Assuming it exists, we define ai such that

PðgiðX ; aiÞpȳÞ ¼ q̄, (33)
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so that ai is the value for d that satisfies design condition #1, defined by Eq. (30a), under surrogate model gi.
In the case of a non-unique solution, we choose the minimum ai that satisfies Eq. (33). The performance of
design ai, assuming model gj 2 G is true, is given by

xij ¼ PðgjðX ; aiÞpȳÞ, (34)

which may or may not equal the required reliability, q̄. We say design ai is conservative if the reliability exceeds
q̄, and non-conservative otherwise. We assume models that favor conservative designs are favorable to models
that favor non-conservative designs and use this assumption as the basis for our interpretation of surrogate
model utility. A similar approach for conservative estimates of probability distributions is presented by
Picheny [24].

An appropriate value for the utility of surrogate model gi 2 G, if surrogate model gj 2 G is true, is given by

Uðgi; gjÞ ¼
~Uðai; ajÞ ¼

b1ðai � ajÞ
2 if xijXq̄;

b2ðai � ajÞ
2 if xijoq̄;

(
(35)

where b2Xb1X0 are deterministic parameters, and we replace U with ~U to denote that the utility function can
be expressed as a function of ai and aj . By Eq. (35), models that favor non-conservative designs are assigned a
large utility; models that favor overly conservative designs are also subject to penalty.

The expected utility of each surrogate model, denoted by u1; . . . ; u6, is illustrated by Fig. 14(a) for 5pnp81;
the corresponding optimal surrogate model for each value for n is shown in Fig. 14(b). Parameters b1 ¼ 1,
b2 ¼ 100, q̄ ¼ 0:9, and ȳ ¼ 50 were used for calculations. The results are different than those shown in Fig. 13
because the optimal model under the decision-theoretic method depends on the model use. For example,
surrogate model g1, a second-order polynomial, is often optimal because it results in a conservative design of
the system, i.e., values for design parameter d such that PðYpȳÞXq̄. Models selected by the classical method
provide no such guarantee on design performance.

4.2.2.2. Case #2. By Eq. (30), the model use for Case #2 is different than for Case #1; our definition for the
utility function must therefore reflect this. Assuming it exists, we define ai such that

E½giðX ; aiÞ� ¼ r̄, (36)

so that ai is the value for d that satisfies design condition #2, defined by Eq. (30b), under surrogate model gi.
As before, in the case of a non-unique solution, we choose the minimum ai that satisfies Eq. (36). The
performance of design ai, assuming model gj 2 G is true, is given by

xij ¼ E½gjðX ; aiÞ�, (37)

which may or may not be equal to r̄, the design requirement. We say design ai is non-conservative if the mean
value exceeds r̄, and conservative otherwise; we assume models that favor conservative designs are favorable to
models that favor non-conservative designs.
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An appropriate value for the utility of surrogate model gi 2 G, if surrogate model gj 2 G is true, is given by

Uðgi; gjÞ ¼
~Uðai; ajÞ ¼

b1ðai � ajÞ
2 if xijpr̄;

b2ðai � ajÞ
2 if xij4r̄;

(
(38)

where b2Xb1X0 denote deterministic parameters. The expected utility of each surrogate model, denoted by
u1; . . . ; u6, is illustrated by Fig. 15(a) for 5pnp81; the corresponding optimal surrogate model for each value
of n is shown in Fig. 15(b). Parameter r̄ ¼ 30 was used for calculations. The expected utilities are undefined for
no12 since no value for d exists to satisfy the design requirement given by Eq. (30b); g% is therefore identical
to results using the classical method (Fig. 13) for no12. Together, Figs. 14 and 15 illustrate that, in general,
different surrogate models are optimal for the two different design constraints defined by Eq. Eq. (30). This
feature further demonstrates that the optimal surrogate by the decision-theoretic method depends on the
model use.

4.3. Uncertainty quantification

Device penetration into media such as metal and soil is an application of some engineering interest [25,26].
Often, these devices contain internal components which must survive the severe environment that accompanies
the penetration event. In addition, these systems must be robust to perturbations in operating conditions,
some of which can only be described to within some level of uncertainty.

A schematic of a penetration system just prior to impact with a soil target is illustrated by Fig. 16(a), where
X 1 denotes the orientation angle of the penetrator with respect to the velocity vector, v, and X 2 is a parameter
characterizing target hardness. A considerable amount of uncertainty exists in our knowledge of X 1 and
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Fig. 16. Penetration system: (a) schematic, and (b) finite element model.
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X 2 due to unknown wind conditions and target properties. Accordingly, we model X 1 as a Gaussian random
variable with zero mean and unit variance, and X 2 as a lognormal random variable with a mean and standard
deviation of 40 and 15, respectively, to represent this uncertainty. Further, we assume X 1 and X 2 to be
independent; for additional discussion of these uncertainties, see Ref. [27].

Component response to the penetration event is quantified by the shock response spectrum (SRS) of lateral
acceleration at the centroid of a critical internal component; this component is denoted by symbol C. Of
particular interest is the peak value of the SRS of lateral acceleration, normalized by a constant and denoted
by Y. Our objective is to assess

pF ¼ PðY40:9Þ, (39)

the probability that output Y will exceed 0.9, a known, specified threshold. We refer to pF as the probability of
system failure.

A comprehensive FE model for the penetrator, comprised of approximately 60,000 degrees-of-freedom, is
illustrated by Fig. 16(b). PRONTO3D [28], a nonlinear transient dynamics FE code developed at Sandia
National Laboratories, coupled with a spherical cavity expansion representation for the soil–structure
interaction [25,29], is used to predict the transient acceleration response of C during the penetration event.
Filtering routines are then used to compute the frequency-domain SRS and corresponding value for Y.
However, the calculation of output Y for a single value of X 1 and X 2 using this comprehensive FE model
requires over 33 hours of compute time. This renders traditional methods to estimate pF defined by Eq. (39) by
Monte Carlo sampling infeasible; surrogate models for the comprehensive FE model illustrated by Fig. 16(b)
are therefore needed.
4.3.1. Candidate models

Results from m ¼ 5 independent flight tests of the penetrator are available and define the validation data for
the problem. Various environmental conditions were monitored during each test, including values for X 1, the
orientation angle of the penetrator at impact, and X 2, a parameter quantifying target hardness. The measured
values for X 1 and X 2, as well as normalized measurements of component SRS, are illustrated by Figs. 17a
and 18a, respectively. Next, we suppose there is sufficient computer resources to perform n ¼ 11 evaluations of
the comprehensive FE model for the penetration system, where each evaluation is defined by distinct fixed
values for random variables X 1 and X 2. Design of experiment methods (see, for example, Ref. [30]) can be
used to select values for X 1 and X 2; the values considered herein are illustrated by Fig. 17(b). The
corresponding normalized predictions for component SRS using the comprehensive FE model are illustrated
by Fig. 18(b). Together, Figs. 17b and 18b illustrate the available calibration data.

We consider 5 candidate surrogate models for f, given by

G ¼ fg1; g2; g4; g5; g6g

¼ fgðX 1;X 2;P
6
2Þ; gðX 1;X 2;P

10
2 Þ; gðX 1;X 2; E

11
2 Þ; gðX 1;X 2; ~E

11

2 Þ; gðX 1;X 2; I
11
2 Þg ð40Þ
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for the purpose of accurately estimating pF , the probability of system failure defined by Eq. (39). The
functional form for each surrogate is defined by Eq. (7), and the parameters for each surrogate are estimated
from the calibration data. We note that because no15, there is insufficient calibration data to estimate the
coefficients of a fourth-order polynomial and we therefore do not include surrogate g3 in the collection defined
by Eq. (40). Contours of surrogates g1, g2, g4, and g6 are illustrated by Fig. 19. As for previous applications,
the surrogate models are very different, but each is consistent with the available information.

4.3.2. Optimal model

The surrogate model probabilities defined by Eq. (3) are listed in the first column of Table 1 assuming
l ¼ 1=2. By the classical method for model selection, surrogate g2 is optimal because it has the greatest
probability. However, the model probabilities are nearly identical so that there is no clear winner among the
collection.

We next apply the proposed decision-theoretic method for model selection so as to explicitly include the
purpose of the model, i.e., accurate estimates of system failure, into the selection process; this is not possible
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Table 1

Probabilities, pi, expected utilities, ui, and probability of failure estimates, pF ;i, for each surrogate model used for application #3

Model Classial method Decision-theoretic method

pi pF ;i ui ðb̄ ¼ 10Þ ui ðb̄ ¼ 5Þ ui ðb̄ ¼ 2Þ

g1 0.200 0 0.0183 0.0091 0.0037

g2 0.232 0 0.0183 0.0091 0.0037

g4 0.185 0.071 0.0032 0.0032 0.0032

g5 0.187 0.069 0.0030 0.0030 0.0030

g6 0.196 0.001 0.0180 0.0090 0.0036

The optimal model is in bold.
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Fig. 19. Contours of surrogate models for application #3: (a) g1, (b) g2, (c) g4, and (d) g6.
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with the classical method. Let

pF ;i ¼ PðgiðX 1;X 2Þ40:9Þ (41)

denote an estimate for pF using surrogate gi 2 G. The values for pF ;i are listed in the second column of Table 1
illustrating that, with surrogate models g1, g2, and g6, we get estimates of pF near zero. Models g4 and g5

deliver nearly identical estimates for the probability of system failure. Further, these estimates are conservative
with respect to the others.

We desire a utility formulation that favors conservative estimates for pF . An appropriate choice is given by
Eq. (22) used for application #1, with xi everywhere replaced by pF ;i defined by Eq. (41), since non-
conservative estimates for pF will be assigned a large utility. The expected utilities of each surrogate model are
listed in columns 4–6 of Table 1. Three cases are considered, which correspond to three different values for
parameter b̄ ¼ b2=b1, where b1 and b2 are defined by Eq. (22). For b̄� 1, non-conservative predictions of
system failure are highly penalized with respect to conservative predictions; as b̄! 1, the utility for
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conservative and non-conservative models is identical. As indicated by Table 1, surrogate g5 is optimal under
the decision-theoretic method because it provides conservative estimates for pF and, consistent with Eq. (6), it
has the least expected utility. The optimal model does not change over a wide range of values for b̄, meaning
that precise values for utility parameters b1 and b2 are not essential for a rational decision.

5. Conclusions

Methods were developed and applied to select the optimal member from a collection of candidate surrogate
models, where each is an approximation for a single comprehensive model. Each model in the collection was
consistent with limited information provided by the comprehensive model. Classical methods select the
surrogate model that best fits the data provided by the comprehensive model; it was shown that this technique
is independent of the model use and, therefore, was inappropriate for some applications. The proposed
approach applied techniques from decision theory, where postulated utility functions were used to quantify
the model use. A criticism of the method is the possible subjectivity of the utility function since the
construction of such a function required a fair understanding of the consequences of unsatisfactory system
behavior. We therefore assumed these consequences to be well-specified for all examples considered. Three
applications were presented to illustrate the methods. These included surrogate model selection for the
purpose of: (1) estimating the minimum of a deterministic function, (2) the design under uncertainty of a
simple oscillator, and (3) reliability assessment of a complex engineering system subject to a severe shock and
vibration environment. Further application of these methods include constitutive models for material
properties of encapsulating foams to mitigate the transmission of mechanical shock loads [10], aerodynamics
models for turbulent pressure fluctuations during atmospheric re-entry of a spacecraft [13], and the monitoring
of vehicles in the vicinity of critical national assets [14].
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